

INDICE

- 1 | El papel de la farmacogenética en la variabilidad.
- 2 | ¿Cómo somos?
- 3 | Utilidad de la farmacogenética.
- 4 | Recursos, ejemplos.

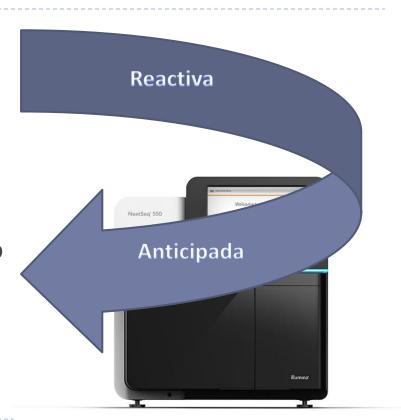
Fuentes variabilidad

pharmaNAGEN

Biofarmacia Dosis absorbida Variabilidad en Dosis administrada la respuesta Conc. Plasm/biofase Efecto Farmacocinética Farmacogenética

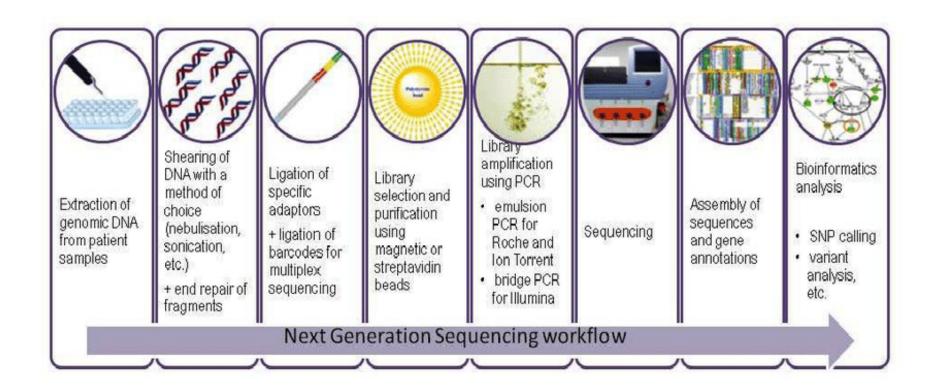
pharmaNAGEN

Evolución

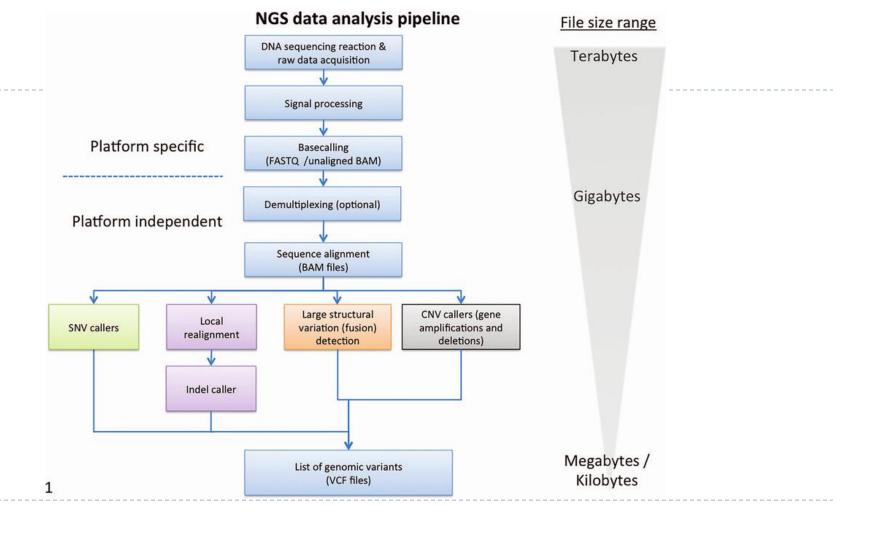

- Pitágoras: siglo VI A.C. Favismo. Anemia hemolítica por ingesta de habas. (G6PD).
- ▶ 1909: Wilhelm Johannsen. Fenotipo y Genotipo.
- ▶ 1959: Friedrich Vogel: Farmacogenética
- Metabolismo de isoniazida (neuritis periférica) NAT2
- ▶ 1987: Caracterización de CYP2D6.
- ▶ 1990: TPMT, etc.

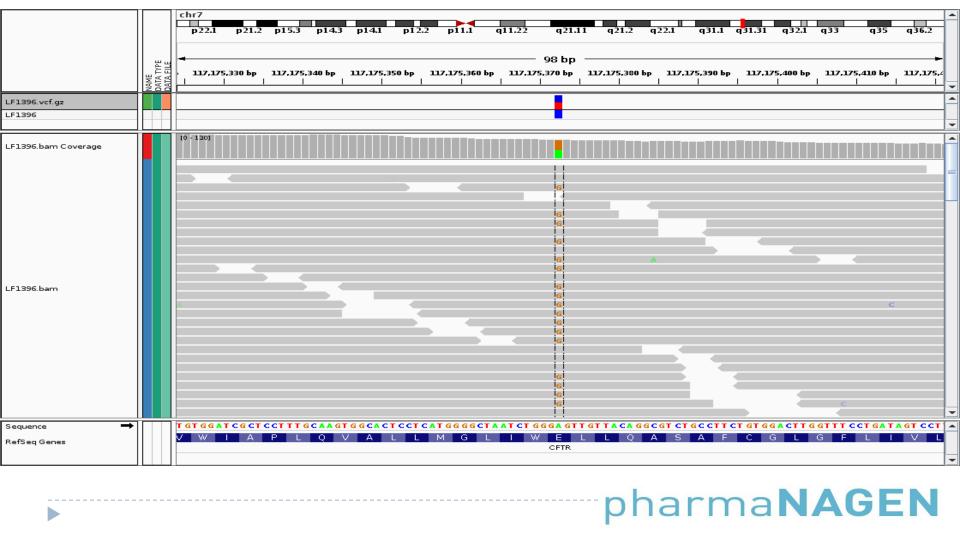
pharmaNAGEN

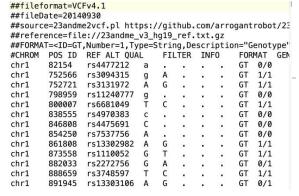
Métodos

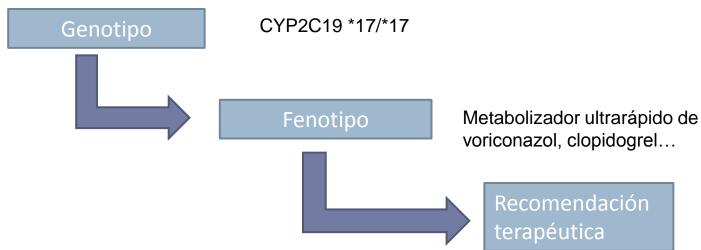

- Test de SNP
 - Única variación.
 - Panel de SNP.

- Next Generation Sequencing
 - Secuenciación de genoma completo
 - Secuenciación de exoma completo
 - Secuenciación dirigida




pharma **NAGEN**


Métodos



AAGGAGGTA GATCAAACAAGAGCATAGTAATTGCTGCC AAAAGGAGGATCGTAGJAACTAACAG GCCAACACC CTGTCCAACAA TGANAACAACTCCCATC' TAA(AAT)TCAA|AGAACCTAAA|ATACTAGAC TTATATTAAA AN MATGGEACAGTCTAAAGCTGGCCC AG/AGTIGTGCCAAATTGCCCIGCCAACGGT&GATACAICTGTITCA&CTOGT GGGGGAAGTATTICAAAAACTTATGTTIGTICAGTCGCGGGAAAGCTATG TCTGGGCTCCTGATCATCAAAGGCAGTAACCAAZTCCCGAAT TACTGGCATTACGAAAAAAAAAAA GATAACTCTAGGO CTCAGATTCTA TAATAATAAA. GGGGGAAGTATTA GATAACTCTAGGCGGATAA ACACCAGCCAAATGTAAAC ACAGTCTAA

Proyecto NAGEN: Navarra Genoma 1000

Estudio de 1000 genomas de pacientes con enfermedades raras.

Hallazgos incidentales: farmacogenética.

Proyecto NAGEN: Navarra Genoma 1000

- 21 farmacogenes: nivel alto de evidencia (1a/1b)
 - ANKK1, CFTR, CYP2B6, CYP2C19, CYP2C9, CYP2D6, CYP3A5, CYP4F2, DPYD, EGFR, G6PD, HLA-B, IFNL3, IFNL4, MT-RNR1, NUDT15, SLCO1B1, TPMT, UGT1A1, VKORC1, XPC.
 - ▶ 61 genotipos distintos
- **34 fármacos**: abacavir, acenocoumarol, allopurinol, aminoglycoside antibacterials, amitriptyline, atazanavir, azathioprine, bupropion, capecitabine, carbamazepine, chlorproguanil, cisplatin, citalopram, clopidogrel, codeine, efavirenz, erlotinib, fluvoxamine, gefitinib, interferons, ivacaftor, nortriptyline, ondansetron, paroxetine, peginterferon alfa-2a, phenytoin, rasburicase, sertraline, simvastatin, tacrolimus, tramadol, voriconazole, warfarin.
- ≥ ≈195.000 prescripciones en 2017.

- Proyecto NAGEN: Navarra Genoma 1000
 - ▶ 177 pacientes:
 - ▶ 100% al menos 1 variante accionable.
 - ▶ 542 genotipos distintos del "normal" en 10 genes (no todos analizados)
 - ▶ 3,41 genotipos por paciente. Máximo 7. Mínimo 1.

Gen	Referencia rs*	Heterocigosidad	Genotipo		
XPC	rs2228001	Variante en heterocigosis	XPC rs2228001 en heterocigosis (GT)		
	rs28399504	Variante en heterocigosis			
CYP2C19	rs4244285	Variante en heterocigosis	CYP2C19*2/*4A		
CYP2C9	rs1799853	Variante en heterocigosis	CYP2C9*1/*2		
SLCO1B1	rs4149056	Variante en heterocigosis	SLCO1B1 rs4149056 en heterocigosis (CT)		
IFNL3	rs12979860	Variante en heterocigosis	IFNL3 CT		
CYP3A5	rs776746	Variante en homocigosis	CYP3A5*3/*3		

CYP2C19	Frecuencia	Frecuencia esperada		
Ultrarapid Metabolizer	5,1%	4,6%		
Rapid Metabolizer	28,2%	26,9%		
Normal Metabolizer	38,4%	39,2%		
Metabolizer	25,4%	26,8%		
Poor Metabolizer	2,8%	2,5%		
Unknown	0,0%	0,0%		

ТРМТ	Frecuencia	Frecuencia esperada		
TPMT Normal Metabolizer	83,1%	87,4%		
TPMT Intermediate Metabolizer	15,3%	11,7%		
TPMT Poor Metabolizer	1,7%	0,4%		
Indeterminate	0,0%	0,5%		

CYP3A5	Fenotipo	Frecuencia
CYP3A5*1/*1		
(TT)	Metabolizador normal	2,8%
	Metabolizador	
CYP3A5*1/*3	intermedio	11,3%
CYP3A5*3/*3		
(CC)	Metabolizador lento	85,9%

- La introducción de la PG en la clínica está siendo lenta a pesar del volumen creciente de literatura
- Controversia: ¿Dónde ponemos el listón de la evidencia para tomar decisiones? ¿Son necesarios datos "duros" o no?
 - Los ensayos clínicos randomizados son el "gold standard" pero son difíciles de hacer en PGx por el pequeño porcentaje de población con una variante concreta o por problemas éticos.
 - Habitualmente hacemos ajuste de dosis basados en otra información con pocos o ningún estudio poblacional que mida respuestas.
 - Las fichas técnicas y otras fuentes incluyen información sobre el ajuste renal que no está basada en estudios de validación con "n" suficiente.

Caudle KE, et al. Am J Health Syst Pharm. 2016; 73(23):1977-85

Obstáculos

pharmaNAGEN

- El conocimiento tiene que venir de otra clase de estudios
 - Estudio de casos
 - Estudios transversales
 - Estudios de casos-controles
 - Estudios farmacocinéticos-farmacodinámicos o in-vitro.
- La aceptación va a depender de varios factores:
 - La consecuencia de la interacción gen-fármaco: estrategias de seguridad, por ejemplo.
 - El grado de confort de los clínicos con el uso de información que no venga de Ensayos Clínicos o de las diferentes guías.

Caudle KE, et al. Am J Health Syst Pharm. 2016; 73(23):1977-85

Obstáculos

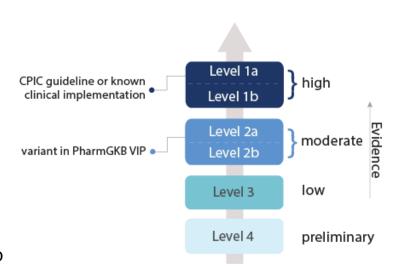
pharma **NAGEN**

Warfarina/acenocumarol

- COAG: warfarina: algoritmo de dosificación con datos de CYP2C9/VKORC1 vs esquema estándar.
 - No diferencias en % de tiempo en INR a los 30 días.
 - Peor en afroamericanos.
- EU-PACT: warfarina en población europea.
 - Aumento del tiempo en INR objetivo.
 - Menos pacientes con INR>4
 - Menor tiempo a INR
- EU-PACT: acenocumarol en población europea.
 - No diferencias
- Kimmel SE et al. N Engl J Med. 2013; 369:2283-93.
- Pirmohamed M et al. N Engl J Med. 2013; 369:2294-303.
- Verhoef TI et al. N Engl J Med 2013; 369:2304-2312

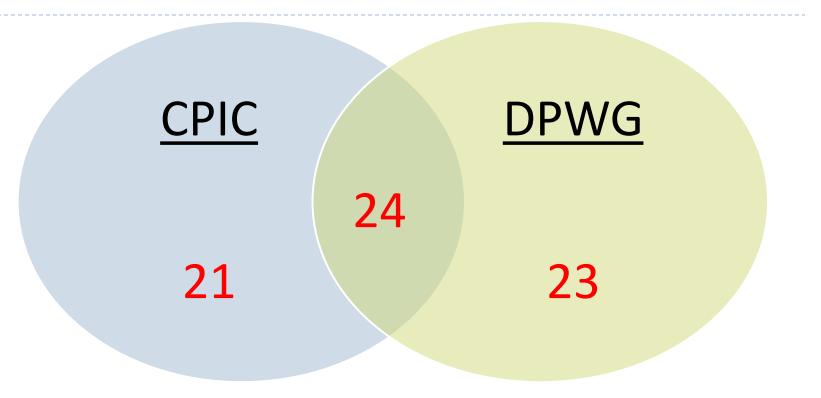
Clopidogrel en PCI

- Cavallari LH et al. JACC Cardiovasc Pharmacol. 2018; 11:181-191.: Ensayo pragmático multicéntrico en pacientes sometidos a PCI (N=1815), el riesgo de eventos cardiovasculares fue mayor en los pacientes CYP2C19 IM/PMs tratados con clopidogrel frente a la terapia alternativa* (HR 2.26, 95% CI 1.18-4.32)
 - *Ticagrelor, prasugrel, or clopidogrel altas dosis
- Lee CR et al. Circ Genom Precis Med. 2018; 11(4):e002069: estudio observacional en un único centro de pacientes sometidos a PCI (N=1193). El riesgo de eventos cardiovasculares fue mayor en CYP2C19 IM/PMs tratados con clopidogrel frente a la terapia alternativa* (HR 4.65, 95% CI 2.22-10)
 - *Ticagrelor or prasugrel
- ▶ En los dos estudios no se hallaron diferencias en CYP2C19 UM/RM/NMs tratados con clopidogrel frente a la terapia alternativa.
- Cuestiones sin resolver: ¿terapia dirigida vs terapia convencional? ¿otras indicaciones?


pharmaNAGEN

- PHARMGKB: www.pharmgkb.org
 - Repositorio de información farmacogenética
 - Permite buscar por:
 - □ Fármaco
 - □ Gen
 - Variante
 - Contiene información sobre:
 - Guías de dosificación
 - Fichas técnicas
 - Anotaciones clínicas y sobre las variantes
 - Pathways
 - Resumen de los VIP

pharma **NAGEN**


- PHARMGKB: www.pharmgkb.org
 - Niveles de evidencia
 - Nivel 1A: guía de CPIC o de sociedad médica.
 - Nivel 1B replicados en más de una cohorte con significación estadística y tamaño del efecto grande.
 - Nivel 2A un nivel 2B en un gen importante.
 - Nivel 2B Evidencia moderada: replicado pero no en todos significativo o efecto pequeño.
 - □ **Nivel 3**: Un único estudio o múltiples pero sin clara evidencia de asociación.
 - □ **Level 4**: casos, estudios in vitro, etc.

pharmaNAGEN

- Grupos de guías
 - Clinical Pharmacogenetics Implementation Consortium: CPIC
 - Diseñadas para ayudar a los clínicos a entender cómo optimizar la terapéutica con los diferentes test farmacogenéticos disponibles.
 - Diplotipo-Fenotipo
 - ☐ Fenotipo-Recomendación con graduación de la fuerza.
 - □ 45 fármacos
 - Dutch Pharmacogenetics Working Group.
 - Diseñadas para su implantación en sistema de prescripción.
 - Caracteriza cada recomendación según la evidencia y el impacto clínico.
 - Recomendación sobre test anticipado.
 - □ 47 fármacos.

pharmaNAGEN

pharma **NAGEN**

- Grupos de guías
 - Diferencias en las recomendaciones
 - 32% de recomendaciones en fármacos comunes difieren.
 - Asignación de genotipo-fenotipo.
 - Genotipos dudosos: CYP2D6 IM o CYP2D6 PM
 - Genes involucrados: antidepresivos tricíclicos
 - □ CPIC: CYP2C19 y CYP2D6
 - DPWG: CYP2D6
 - Enfoque de las recomendaciones.
 - DPWG: mayor papel de la farmacocinética (contexto más local)

pharmaNAGEN

Ejemplo

- BE: mujer de 45 años con diagnóstico de depresión.
 - Analítica: normal.
 - Historia: sin otros antecedentes.
 - Ha probado varios antidepresivos en el pasado:
 - ☐ Fluoxetina 20 mg: no notó mejoría en los síntomas
 - ☐ Bupropion 150 mg diarios: empeoró su ansiedad.
 - Se plantea el uso de citalopram o sertralina.

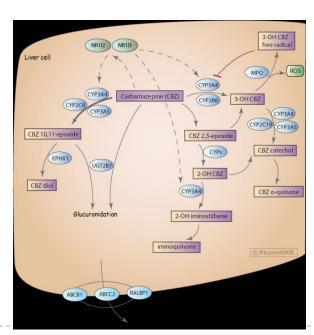
pharmaNAGEN

Ejemplo

- CYP2D6 *1/*1
- CYP3A4 *1/*1
- SLCO1B1 *1/*5
- CYP2C19 *2/*2
- CYP3A5 *3/*3

- CYP2C9 *1/*1
- CYP1A2 *1A/*1A
- VKORC1 A/A
- ▶ SLC6A4 L/L

pharma **NAGEN**


Ejemplo

- CYP2C19 es importante para citalopram, escitalopram y sertralina.
- La paciente tiene un genotipo CYP2C19*2/*2 que se corresponde con un fenotipo de metabolizador lento.
- Los metabolizadores lentos tienen una tasa de metabolismo más baja que los normales lo que llevaría a la acumulación de fármaco en el organismo.
- DPWG: citalopram o sertralina: no sobrepasar el 50% de la dosis estándar por aumento del riesgo de prolongación QT.
- CPIC: lo mismo o considerar alternativa.
- Una alternativa para esta paciente serían ISRS que se metabolizasen por otra vía: paroxetina (CYP2D6) También podría utilizar IRSN como venlafaxina, duloxetina.

Multiplicidad de factores ambientales y personales que influyen.

- Multiplicidad de vías metabólicas.
- Fármacos que interaccionan.
- Situación del paciente

Eliglustat

pharmaNAGEN

CYP2D6	NORMAL	IH GRAVE MODERA DA	IHLEVE			I RENAL	INH POTENTE CYP2D6	INH CYP2D6 +INH CYP3A	INH CYP3A	
				Inh Potente CYP2D6	Inh Moderado CYP2D6	Inh Leve CYP2D6 o INH CYP3A				
UR	X	X	X	Х	Х	Х	X	Х	Х	X
RAPIDO (NORM)	84/12 H	X	84/12 H	Х	Х	84/24 H	84/12 H*	84/24 H	Х	Precaución
INTERM	84/12 H	Х	Х	Х	Х	Х	Х	84/24 H	Х	Precaución
LENTO	84/24 H	Х	Х	Х	Х	Х	Х	84/24 H**	Х	Х

pharma **NAGEN**

Proyecto PharmaNAGEN.

- Integrar la información farmacogenética en los sistemas de prescripción.
- Revisión sistemática de las recomendaciones terapéuticas.
- Explorar la utilidad de la secuenciación de exoma en PG:
 - Pacientes de Enfermedad Inflamatoria Intestinal: azatioprina
 - Pacientes de trasplante Hematológico: modelo farmacocinéticofarmacogenético de tacrólimus.

- La tecnología NGS puede cambiar el enfoque actual
- Todos somos distintos: individualizar.
- La farmacogenética es una herramienta que puede ayudar a mejorar la terapéutica, más en combinación con otras herramientas: farmacocinética, etc.
- Existen controversias y respuestas aún por dar.

Gracias por vuestra atención

Juan José Beloqui Lizaso

Coordinador PHARMANAGEN
jj.beloqui.lizaso@navarra.es
@jbelliz

